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Self-organized criticality on quasiperiodic graphs
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Abstract. Self-organized critical models are used to describe the 1/f-spectra of rather different physical
situations like snow avalanches, noise of electric currents, luminosities of stars or topologies of landscapes.
The prototype of the SOC-models is the sandpile model of Bak, Tang and Wiesenfeld (Phys. Rev. Lett.
59, 381 (1987)). We implement this model on non-periodic graphs where it can become either isotropic or
anisotropic and compare its properties with the periodic counterpart on the square lattice.

PACS. 61.44.Br Quasicrystals – 05.65.+b Self-organized systems

1 Introduction

Self-organized criticality (SOC) is observed in various dy-
namical systems that develop algebraic correlations. The
systems drive themselves into critical states independent
of initial states or tuning of parameters. The complex be-
haviour is characterized by the absence of characteristic
time or length scales. It is possible to define a set of criti-
cal scaling exponents that characterize the large scale be-
haviour and describe the universal 1/f-power spectra (for
an overview see Ref. [2] in [2]).

Sandpile automata [1] are among the simplest models
that develope SOC behaviour in the avalanche propaga-
tion. The model is defined as follows: on each site of a
lattice, a variable zi is defined (number of grains of sand).
At each time step, the variable at a randomly chosen site
is increased zi → zi + 1. Above a critical value zc, the site
topples zi → zi − zc and the nearest neighbors j of site i
are increased zj → zj + 1. Thereby, zc grains of sand have
been transported from site i to the neighbors j. A top-
pling can induce nearest neighbor topplings and can cre-
ate avalanches of arbitrary sizes s. For finite systems, one
typically uses open boundary conditions (periodic bound-
ary conditions can lead to never ending avalanches), i.e.
the sand is just dropping from the table if it reaches the
border. This introduces the concept of finite size scaling
(FFS) to compensate cutoff effects. Under the assump-
tion that FFS is valid the avalanches are described by
three variables: the number of toppling s, the area a cov-
ered by an avalanche and the avalanche duration T . The
probability distributions of these variables are algebraic:

P (x) = x−τxG

(
x

xc

)
(1)
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with x ∈ {s, a, T}. G is a cutoff function and the cutoff
diverges xc ∼ Lβx with the system size L → ∞. The
universality class is determined by the set of exponents
{τx, βx}. Very recently, the validity of FFS for sandpile
models was questioned [3] but this discussion is far beyond
the scope of this article. We refer to [3] and references
therein and take FFS as a working hypothesis hereafter.

The sandpile automata can be isotropic [1], i.e. the
sand is distributed equally between nearest neighbors, or
anisotropic [4]. The question whether both belong to the
same universality class is still under discussion. Whereas
real-space normalization group [5], field theoretical [6] and
late numerical approaches [2] suggest that both belong
to the same universality class, Ben-Hur and Biham [7]
question these results.

In what follows we implement the sandpile model on
the 8-fold quasiperiodic rhombus-tiling, also called Am-
mann-Beenker tiling. Due to the specific geometry of qua-
siperiodic tilings it can become either anisotropic with
complete non-deterministic toppling rules, or isotropic
with deterministic topplings, or a mixture of both.

2 Non-periodic tilings and SOC

Non-periodic tilings [8] are used to describe the geome-
try of quasicrystals [9]. They appear in two distinguished
classes. The ideal quasiperiodic tilings are produced by a
cut-and-project-scheme from a higher dimensional (mini-
mal) embedding lattice [10,11]. Their vertices are given by
so-called model sets [12] and they show pure Bragg-peak
diffraction spectra with non-crystallographic symmetries
(5, 7, 8, ...-fold). Typically, the tilings are built by two
or more prototiles. Figure 1 shows the 8-fold Ammann-
Beenker tiling consisting of two prototiles, a square and a
π/4 rhombus.
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Fig. 1. The ideal Ammann-Beenker tiling and a critical state
at the end of an avalanche of type (I). The symbols on top of
the vertices code the number of grains of sand zi and zc = 5.

The second class of non-periodic tilings are the so-
called random tilings. They are constructed by the same
prototiles as the ideal ones but this time these prototiles
fit together stochastically in such a way that they fill
the entire space, face to face without gaps and overlaps
[13,14]. They also can be embedded into a higher dimen-
sional lattice but their diffraction properties change. They
can keep the same symmetry of the ideal counterparts but
this time, their diffraction spectrum consists of Bragg-
peaks and diffuse scattering (in 3D) or algebraic peaks
(in 2D).

Beneath the long-range correlations which govern the
diffraction properties, the main difference of non-periodic
tilings compared to crystallographic tilings is in their lo-
cal neighborhood. Whereas we have a fixed translational
invariant neighborhood for crystals, we have a finite at-
las of different vertex configurations without translational
invariance for quasicrystals. For the example of the Am-
mann-Beenker tiling, we find 6 different vertices in the
ideal and 16 different configurations in the random ver-
sion. The number of nearest neighbors ranges from 3 to
8 [15].

Concerning SOC-models, one now could expect two
major influences. Both, long-range correlations and the
diversity of the local neighborhoods of the tilings, could
develop a difference in the avalanche distribution. It is not
necessary to test a lot of different quasiperiodic tilings
because the generic features of quasiperiodicity are the
same. Symmetry or the type of the tiling plays a minor
rôle. Additionally, the local configurations allow different
implementations of e.g. the sandpile model. For simplicity
we will focus on three potentially different versions (there
are more possible but typically they fall in the same cat-
egories) on the 8-fold Ammann-Beenker tiling:

(I) anisotropic and non-deterministic: The critical
height zc and the number of toppling grains ni =
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Fig. 2. Comparison of anisotropic avalanche distributions of
an ideal and a random tiling version of the Ammann-Beenker
tiling at L = 128.

zc > 0 are equal for all vertices i of the tiling. At ev-
ery toppling step one has to make a random choice
to distribute the ni grains among the Ni neighbors
(3 ≤ Ni ≤ 8) of the toppling vertex i.

(II) partly isotropic and deterministic, partly not: zc is
equal for all vertices i but greater or equal to the
minimal number of neighbors Nmin = 3 and less
than the maximal number of neighbors Nmax = 8.
The number of topplings at site i is ni = min(zc, Ni)
where Ni again is the number of neighbors of vertex
i. This way, the toppling rules are locally isotropic
and deterministic for vertices with Ni ≤ zc but
anisotropic and non-deterministic for all the others
because of the random choice one has to make in
order to distribute the ni = zc grains among the
Ni > zc neighbors.

(III) isotropic and deterministic: zc is greater or equal
than the maximal number of neighbors Nmax = 8,
but the number of toppling grains of vertex i is al-
ways ni = Ni. This way, every bond will transport
the same amount of grain in both directions and the
number of topplings is given locally by the number
of neighbors.

After a suitable thermalization, we perform 2 × 106

(L = 16, 32, 64) and 5 × 105 (L = 128, 256) avalanches
for the different scenarios. Each avalanche is separated
by an appropriate thermalization time to prevent cross-
correlations. The system size (L×L) is given by the length
L which varies from 16 to 256 whereas the absolute scale
is given by the bond length of the tiling that is equal
to one. For each setting, the avalanche distributions are
stored. According to the finite size scaling assumption,
the data for the different length scales should collapse to
a single curve that is determined by the critical exponents
τx, βx. Figure 3 shows the data collapse of the probabil-
ity distributions of the number of topplings s for version
(I), Figure 4 for version (II), and Figure 5 for the isotropic
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Fig. 3. Data Collapse of the probability distribution of the
number of topplings s for the anisotropic, non-deterministic
version (I) on the ideal Ammann-Beenker tiling. System
lengths are L=16 (◦), 32 (2), 64 (�), 128 (4), and 256 (+).
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Fig. 4. Data Collapse of the probability distribution of the
number of topplings s for version (II) on the ideal Ammann-
Beenker tiling. System lengths and symbols as in Figure 3.

deterministic version (III). Table 1 gives the extracted nu-
merical values for the exponents. The errors given in the
brackets are the statistical errors of the fitting procedure.

Within the limits set by the small statistic, all three
version belong to the same universality class: the crtiti-
cal exponents and also the scaling functions seem to be
the same. If one compares the distributions of the ideal
quasiperiodic tilings and the corresponding random tiling,
there is no apparent difference (see Fig. 2). Looking at the
crystalline counterpart, the 2D square lattice, the state
of the art values for the exponents are τs = 1.27(1) and
βs = 2.73(2) [2]. These values are determined by massive
parallelized computation. From the difference to Table 1
one cannot conclude that there exists a different univer-
sality class for quasiperiodic graphs. The values of Table 1

Table 1. The critical exponents τs, βs of the three tested ver-
sions (Statistical errors are given in brackets).

Version (I) Version (II) Version (III)

τs 1.20(3) 1.19(3) 1.19(3)

βs 2.5(2) 2.5(2) 2.5(2)
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Fig. 5. Data Collapse of the probability distribution of the
number of topplings s for the isotropic, deterministic version
(III) on the ideal Ammann-Beenker tiling. System lengths and
symbols as in Figure 3.

are more comparable to older estimates for the square lat-
tice based on similar statistics [16]. The distributions for
the area a and duration T are not shown because they
behave in the same way.

3 Conclusion

We have performed numerical estimates of the criti-
cal exponents of the 2D sandpile model on the 8-fold
quasiperiodic Ammann-Beenker tiling. Thereby, three dif-
ferent version (anisotropic-non-deterministic, isotropic-
deterministic and a mixed one) were implemented on the
ideal and on the random Ammann-Beenker tiling. The
measured exponents are comparable to early numerical
results of the 2D square lattice and might suggest that all
tested version belong to the same universality class as the
2D square lattice. The problem however remains to sub-
stantiate this, e.g. by better statistics. This can only be
achieved by a massive use of a parallel computing which
is not at hand at the moment. But the situation seems to
be similar to the investigation of Ising-models [17] which
led to the conclusion that aperiodic and periodic versions
belong to the same universality class.

The author wants to thank S. Maslov and M. Baake for
discussion and helpful comments.
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